Chem. Ber. 107, 518-528 (1974)

Kernresonanzspektroskopische Untersuchungen an Borverbindungen, VI¹⁾

¹⁴N- und ¹¹B-Kernresonanzstudien an Silylaminen und Silylaminoboranen

Heinrich Nöth*, Wolfgang Tinhof und Bernd Wrackmeyer

Institut für Anorganische Chemie der Universität München, D-8000 München 2, Meiserstr. 1

Eingegangen am 26. September 1973

Die chemischen Verschiebungen $\delta^{14}N$ von 39 Silylaminen [(CH₃)₃SiNR₂, [(CH₃)₃Si]₂NR, [(CH₃)₃Si]₃N und *Si*-chlorierte Bis(silyl)amine] werden zusammen mit den $\delta^{14}N$ - und $\delta^{11}B$ -Daten von 19 Silylaminoboranen mitgeteilt. Sie sind mit dem Modell der SiN-(pd)- π -Bindung interpretierbar.

Die Borylierung führt zu einem Abschirmungsverlust am Stickstoff. (pp)- π -Bindung zwischen Bor- und Stickstoff sowie geometrische Effekte werden zur Deutung der δ^{14} N- und δ^{11} B-Daten herangczogen.

Nuclear Magnetic Resonance Studies on Boron Compounds, VI1)

¹⁴N- and ¹¹B-N.M.R. Studies on Silylamines and Silylaminoboranes

The chemical shift data $\delta^{14}N$ of 39 silylamines [(CH₃)₃SiNR₂, [(CH₃)₃Si]₂NR and [(CH₃)₃Si]₃N as well as of *Si*-chloro-bis(silyl)amines] are reported together with ¹⁴N- and ¹¹B-chemical shifts of 19 silylaminoboranes. These data are discussed in terms of the SiN-(pd)- π -bonding model. Borylation of silylamines leads to a deshielding at the nitrogen. (pp)- π -Bonding between B-and N-atoms as well as geometric effects are used for the interpretation of the $\delta^{14}N$ - and $\delta^{11}B$ -data.

Zahlreiche physikalische Untersuchungen an Silicium-Stickstoff-Verbindungen legen nahe, daß die Si---N-Bindung durch eine Bindungsordnung > 1 zu beschreiben ist, d. h. durch eine SiN- σ - und eine SiN-(dp)- π -Bindung. Die damit verbundene Elektronendelokalisierung läßt eine geringe Basizität für die Silylamine erwarten. In der Tat ist diese Verbindungsklasse weit weniger basisch als vergleichbare Amine^{2,3)}. Schwingungsspektroskopische und theoretische Studien sowie Strukturuntersuchungen bestätigen das Bindungsmodell. So entsprechen die Kraftkonstanten für die SiN-Bindung in den Verbindungen Si(NR₂)4⁴, X_{4-n}Si[N(CH₃)2]_n (X = H, Cl, CH₃)⁵) Bindungsordnungen >1. MO-Berechnungen, etwa am Molekül H₃SiNH₂, ergeben, daß die (dp)- π -Überlappung zwischen Si und N nur wenig zum Grundzustand beiträgt,

¹⁾ V. Mitteil.: H. Nöth und B. Wrackmeyer, Chem. Ber. 106, 1145 (1973).

²⁾ E. A. Ebsworth und H. J. Emeléus, J. Chem. Soc. 1958, 2150.

³⁾ E. W. Abel, D. A. Armitage und G. R. Willey, Trans. Faraday Soc. 60, 1257 (1964).

⁴⁾ H. Bürger und W. Sawodny, Spectrochim. Acta 23A, 2841 (1967).

⁵⁾ H. Bürger und W. Sawodny, Spectrochim. Acta 23A, 2827 (1967).

das HOMO jedoch vom π -Typ ist und hauptsächlich aus einem Si(d_{xz})- und N(p_z)-AO resultiert⁶). Außerdem können Dipolmomente der Aminosilane, z. B. des *N*-Trimethylsilylpyrrols^{7,7a}) nur unter dieser Voraussetzung interpretiert und mit dem nach einem CNDO/2-Verfahren unter Berücksichtigung von (dp)- π -Überlappung berechneten Dipolmomenten korreliert werden⁸). Strukturuntersuchungen belegen trigonal-planar koordinierten Stickstoff in den Verbindungen N(SiH₃)₃, HN(SiH₃)₂, HN[Si(CH₃)₃]₂, CH₃N(SiH₃)₂, ClSi[N(CH₃)₂]₃, Cl₃SiN(CH₃)₂ und [(CH₃)₃Si]₂NBF₂^{9,10}). Die Einführung nur einer H₃Si- oder (CH₃)₃Si-Gruppe in ein Amin führt jedoch noch nicht zur Einebnung am Stickstoff.

Die mit der unterschiedlichen Geometrie am Stickstoff verbundene Ladungsdichte müßte im ¹⁴N-Kernresonanzexperiment sichtbar werden. Erste Untersuchungen von Andrianow et al.¹¹ an sieben SiN-Verbindungen sprechen für das SiN-(dp)- π -Bindungsmodell. Wir haben umfangreichere Messungen an Silylaminen vorgenommen und insbesondere die Silylaminoborane mit herangezogen, für die man auf jeden Fall planare Koordination am Bor- und Stickstoffatom¹² erwarten darf. Da δ^{11} B und δ^{14} N weitgehend von der π -Elektronendichte am Bor-¹³⁻¹⁶ bzw. Stickstoffatom^{14, 16, 17}) abhängen, kann der Einfluß der Silylgruppe eingehender untersucht werden. Danach war zu erwarten, daß die chemischen Verschiebungen Anhaltspunkte über elektronische^{13, 14}) und geometrische Effekte¹⁸) liefern würden.

Chemische Verschiebungen $\delta^{14}N$ von Silylaminen

Eine Diskussion der NMR-Daten von Silylaminoboranen setzt die Kenntnis von δ^{14} N-Werten der ihnen zugrundeliegenden Silylamine voraus. In Tab. 1 sind die von uns untersuchten Verbindungen aufgeführt.

Die chemische Verschiebung δ^{14} N von primären Aminen kann man mit Hilfe von Substituentenparametern, die nach der Methode von *Grant* und *Paul*^{19, 20)} erhalten

- ⁹⁾ H. Bürger, Angew. Chem. 85, 519 (1973); Angew. Chem., Int. Ed. Engl. 12, 474 (1973).
- 10) C. Glidewell, D. W. H. Rankin, A. G. Robiette und G. M. Sheldrick, J. Mol. Struct. 5, 231 (1970).
- ¹¹⁾ K. A. Andrianow, V. F. Andronow, V. A. Drozdow, D. Ya. Zhinkin, A. P. Kreschkow und M. M. Morgunova, Dokl. Akad. Nauk SSSR 202, 583 (1972) [C. A. 76, 147048 z (1972)].
- 12) K. Niedenzu und J. W. Dawson, Boron-Nitrogen Compounds, Springer Verlag, Berlin 1965; vgl. die dort zitierte Literatur.
- 13) H. Nöth und H. Vahrenkamp, Chem. Ber. 99, 1049 (1966).
- 14) W. Beck, W. Becker, H. Nöth und B. Wrackmeyer, Chem. Ber. 105, 2883 (1972).
- 15) J. Kroner, D. Nölle und H. Nöth, Z. Naturforsch. 26b, 414 (1973).
- 16) K. Hensen und K. P. Messer, Theor. Chim. Acta 9, 17 (1967).
- 17) M. Witanowski, L. Stefaniak, H. Januzewski, G. A. Webb und Z. Grabowski, Tetrahedron Lett. 1972, 637; M. Witanowski und H. Januzewski, Mol. Phys. 23, 1071 (1972).
- 18) H. Bock und W. Fuss, Chem. Ber. 104, 1687 (1971).
- 19) D. M. Grant und E. G. Paul, J. Amer. Chem. Soc. 86, 2984 (1964).
- 20) P. Lindemann und J. Q. Adams, Anal. Chem. 43, 1245 (1971).

⁶⁾ J. M. Lehr und B. Munch, Chem. Commun. 1970, 994.

⁷⁾ B. Wrackmeyer, Dissertation Univ. München 1973. - 7a) J. Nagy, P. Hencsei und E. Gergoe, Z. Anorg. Allg. Chem. 367, 293 (1969).

⁸⁾ J. Kroner, unveröffentlichte Berechnungen, 1972, vgl. l. c.⁷⁾.

	Verbindung	δ ¹⁴ N [ppm]	<i>h</i> 1/2 [Hz]	Δ14N
1	(C2H3)3SiNH2	+ 373 11)	33	-10
2	(CH ₃) ₃ SiNHCH ₃	+ 373	137	5
3	(CH ₃) ₃ SiNHC ₂ H ₅	+ 343	166	-12
4	(CH ₃) ₃ SiNH – iso-C ₃ H ₇	+330	180	10
5	(CH3)3SiNH <i>—sec-</i> C4H9	+ 338	235	8
6	(CH3)3SiNH <i>—tert-</i> C4H9	+ 321	225	+10
7	(CH ₃) ₃ SiNHC ₆ H ₅	+ 320	1190	-3
8	(CH ₃) ₃ SiN(CH ₃) ₂	+ 374	180	+ 3
9	(CH ₃) ₃ SiN(C ₂ H ₅) ₂	+343	248	+7
10	(CH ₃) ₃ SiN(iso-C ₃ H ₇) ₂	-+ 314	490	+6
11	(CH ₃) ₃ Sin	+-364	226	-22
12	(CH ₃) ₃ SiN	-+ 341	207	-3
13	{(CH ₃) ₃ Si] ₂ NH	+ 351	50	- 32
14	[(CH ₃) ₃ Si] ₂ NCH ₃	+- 370	155	8
15	[(CH ₃) ₃ Si] ₂ NC ₂ H ₅	+ 340	230	-15
16	[(CH3)3Si]2N iso-C3H7	+ 323	280	- 17
17	[(CH3)3Si]2N <i>—tert</i> -C4H9	+316	650	+5
18	[(CH ₃) ₃ Si] ₂ NC ₆ H ₅	+ 287	1200	- 36
19	[CI(CH ₃) ₂ Si] ₂ NH	+ 322	255	61
20	Cl(CH ₃) ₂ Si – NH – Si(CH ₃) ₃	+ 344	183	- 39
21	Cl ₂ (CH ₃)Si – NH – Si(CH ₃) ₃	+ 328	156	-55
22	Cl ₃ Si – NH – Si(CH ₃) ₃	-+-318	125	65
23	[Cl ₃ Si] ₂ NH	+ 293	270	- 90
24	$CI(CH_3)_2Si - N(CH_3) - Si(CH_3)_3$	+337	267	46
25	[CI(CH ₃) ₂ Si] ₂ NCH ₃	+334	160	- 49
26	$Cl_2(CH_3)Si - N(CH_3) - Si(CH_3)_3$	-+-333	270	50
27	$Cl_3Si - N(CH_3) - Si(CH_3)_3$	+ 336	215	-47
28	$Cl_2(CH_3)Si - N(CH_3) - Si(CH_3)_2Cl$	+ 335	280	-4 6
29	[Cl ₂ (CH ₃)Si] ₂ NCH ₃	+- 314	530	- 69
30	(CH ₃ O) ₃ Si – NH – Si(CH ₃) ₃	+36911)	248	-14
31	(CH ₃ O) ₃ Si – NH – Si(OCH ₃) ₃	+-38011)	476	-3
32	(CH ₃) ₂ Si(NHCH ₃) ₂	-+ 363	380	15
33	[(CH ₃) ₂ SiNH] ₃	+ 344	150	- 39
34	[(CH ₃) ₂ SiNCH ₃] ₃	+ 332	320	51
35	[(CH ₃) ₂ SiNH] ₄	+ 332	346	- 51
36	[(CH ₃) ₃ Si] ₃ N	+ 344	168	- 39
37	(CH ₃) ₂ Si[N(CH ₃) ₂] ₂	+ 370	287	-1
38	CH ₃ Si[N(CH ₃) ₂] ₃	+ 367	306	4
39	Si[N(CH ₃) ₂] ₄	+ 366	488	5

Tab. 1. Chemische Verschiebungen δ^{14} N (bezogen auf NO₃⁻), Halbhöhenbreiten und Verschiebungsdifferenzen Δ^{14} N von Silyl-, Disilyl- und Trisilylaminen

wurden, berechnen²¹⁾. Die Tatsache, daß lineare Beziehungen zwischen δ^{13} C und $\delta^{11}B^{22)}$, δ^{13} C und $\delta^{14}N^{71}$ sowie $\delta^{11}B$ und $\delta^{14}N^{71}$ für vergleichbare Verbindungen bestehen, belegt, daß substituenten-induzierte Änderungen der chemischen Verschiebungen stets gleichsinnig wirken als Folge äußerer Störungen¹⁹⁾. Obschon diese auf die Glieder $1/r^3$ und Q_{AB} für den paramagnetischen Term σ_p der *Poples*chen Gleichung²³⁾ Einfluß nehmen dürften, wird bei der Beteiligung einer π -Bindung an der Si – N- bzw. B – N-Bindung vermutlich ΔE , die mittlere Anregungsenergie am stärksten beeinflußt. Je größer ΔE , desto kleiner wird σ_p ! Da dies ein negativer Term ist, bewirkt größer werdendes ΔE eine Hochfeldverschiebung.

Während die Ableitung von Substituentenparametern für $\delta^{15}N$ bzw. $\delta^{14}N$ von Aminen möglich ist, weil keine drastische Änderung der Geometrie am Stickstoff zu erwarten ist, wohl aber H-Brückenbindungseffekte zu berücksichtigen sind, bereitet eine analoge empirische Interpretation der δ^{14} N-Daten von Silylaminen Schwierigkeiten. Geht man davon aus, daß in der Reihe der Trimethylsilylamine (CH₃)₃SiNHR und (CH₃)₃SiNR₂ die Stickstoffatome pyramidal sind, dann sollte für die Trimethylsilylgruppe ein weitgehend konstanter Substituenteneinfluß nachweisbar sein. Wie die dritte Spalte der Tab. 1 für diese Verbindungsreihen zeigt - es sind dort die Differenzen $\Delta^{14}N = \delta^{14}N[(CH_3)_3SiNR_2] \delta^{14}N[HNR_2]$ eingetragen – variiert $\Delta^{14}N$ beträchtlich. Mit zunehmender Sperrigkeit der Alkylgruppe steigt die Abschirmung relativ zum Vergleichsamin, gleichzeitig nehmen die Halbhöhenbreiten der ¹⁴N-Signale zu. Da speziell die β -Verzweigung zu einem besonders stark negativen Verschiebungsbeitrag Anlaß gibt²¹⁾, liegt in den Trimethylsilylaminen ein durch die (CH₃)₃Si-Gruppe ausgelöster gegenläufiger Effekt vor. Er könnte hervorgerufen werden durch eine auf Grund stärker werdender nichtbindender Wechselwirkungen veranlaßte Einebnung am Stickstoff. Verbunden sollte damit ein kleinerer mittlerer Radius r und eine höhere Population von p-Niveaus sein, die zur besseren Abschirmung führen²³⁾.

Die stärkere π -Bindung, d. h. kleiner werdendes ΔE , müßte allerdings wieder mit einer Zunahme des negativen paramagnetischen Abschirmungsparameters σ_p verbunden sein. Allerdings zeigen die Kopplungskonstanten für J_{15}_{NH} (CH₃)₃E-NH-C₆H₅, daß die Bindungswinkel denen der Amine entsprechen sollten^{24a}).

Für eine dp- (π) -Wechselwirkung spricht auch der Vergleich von $(CH_3)_3$ Si-substituierten offenkettigen und cyclischen Aminen. Während der Übergang vom Dimethylamin ($\delta^{15}N - 378$ ppm) zum Aziridin ($\delta^{15}N - 387.2$ ppm) oder von Diäthylamin ($\delta^{15}N 327.9$ ppm) zu Pyrrolidin ($\delta^{15}N 337.3$ ppm) mit Abschirmungsgewinnen von ≈ 9 ppm verbunden ist, resultiert bei den entsprechenden N-Trimethylsilylderivaten (8, 374 ppm/11, 364 ppm, bzw. 9 343/12, 341 ppm) jeweils ein Abschirmungsverlust, der beim Aziridinsystem 11 besonders stark ins Gewicht fällt. Der Beitrag der Tri-

²¹⁾ R. L. Lichter und J. D. Roberts, J. Amer. Chem. Soc. 94, 2495 (1972).

²²⁾ B. F. Spielvogel und J. M. Purser, J. Amer. Chem. Soc. 89, 5294 (1967).

²³⁾ J. A. Pople, J. Chem. Phys. 37, 53, 60 (1962).

²⁴⁾ E. W. Randall, J. J. Ellner und J. J. Zuckerman, J. Amer. Chem. Soc. 88, 622 (1966); E. W. Randall und J. J. Zuckerman, ebenda 90, 3167 (1968). - 24a) Nach A. H. Cowley und J. R. Schweiger, ebenda 95, 4179 (1973), kann der s-Charakter der NH-Bindung in Aminosilanen nicht durch J₁₅_{NH} bestimmt werden.

methylsilylgruppe zu δ^{14} N kann also nicht in Form eines konstanten Substituentenparameters erfaßt werden. Die beobachteten Tieffeldverschiebungen lassen sich jedoch wieder mit (dp)- π -Bindungseffekten interpretieren (s. o.).

Trägt ein N-Atom zwei oder mehr Silylgruppen, dann ist der Stickstoff nach den vorliegenden Strukturuntersuchungen als sp²-hybridisiert anzusehen⁹). Eine Betrachtung der δ^{14} N-Daten der *Si*-Cl-substituierten Disilazane **19**-**29** zeigt, daß eine steigende Anzahl von Cl-Atomen im Molekül eine Tieffeldverschiebung des ¹⁴N-NMR-Signals bewirkt. Dieser Effekt kann auf eine verminderte Elektronendichte am N-Atom zurückgeführt werden; er ist sowohl eine Folge des –I-Effektes der Cl-Atome als auch besserer (dp)- π -Überlappung. Beide sollten eine Zunahme von σ_p , in Übereinstimmung mit der beobachteten Tieffeldverschiebung verursachen. Hieraus folgt andererseits, daß Gruppen, die zur Mesomerie fähig sind, dann eine Hochfeldverschiebung verursachen sollten, wenn dies zu einer Erhöhung der Elektronendichte am Silicium und zu einer Schwächung der SiN-Bindung, d. h. einer Erhöhung der Elektronendichte am Methoxysilyl-amine **30** und **31** die von *Andrianov* et al.¹¹) vermessen wurden, auslegen. Andererseits sind aber die N-Atome im Dimethylbis(methylamino)silan **32** um 10 ppm schlechter abgeschirmt als das N-Atom des *N*-Trimethylsilylmethylamins **2**.

Vergleichbar mit Bis(amino)silanen einerseits und Disilylaminen andererseits sind die Cyclosilazane 33-35. Ihre N-Atome sind weniger gut abgeschirmt als in $(CH_3)_2Si(NHCH_3)_2$ und den Disilazanen 13 und 14. Vergleicht man die $\delta^{14}N$ -Daten dieser SiN-Verbindungen mit den Bor-Verbindungen (RBNR)₃⁷⁾, RB(NHR)₂ und (R₂B)₂NR^{1.14)}, so sind bei den erstgenannten die N-Atome der Cyclosilazane, bei den letztgenannten hingegen die der Diborylamine am schlechtesten abgeschirmt.

Nach schwingungsspektroskopischen Untersuchungen soll 33 eine planare Gerüststruktur besitzen²⁵⁾. Jedoch belegen Elektronenbeugungsuntersuchungen an [(CH₃)₂SiNH]₃²⁶⁾ und [(CH₃)₂SiNH]₄²⁷⁾ sowie eine Röntgenstrukturanalyse von [(CH₃)₂SiNH]₄²⁸⁾ die Nichtplanarität der Cyclosilazangerüste. Der strukturelle Unterschied zwischen beiden Cyclosilazanen besteht aus einem von $\approx 117^{\circ}$ auf $\approx 132^{\circ}$ aufgeweiteten SiNSi-Bindungswinkel im Achtring. Damit verbunden ist wahrscheinlich auch eine SiN-Abstandsverkürzung. Unter diesem Gesichtspunkt wird diegeringere Abschirmung des ¹⁴N-Kerns im Cyclotetrasilazan 35 leicht verständlich.

Die Tieffeldverschiebung der ¹⁴N-Resonanzsignale in der Reihe 8, 14, 36 belegt die zunehmende Delokalisierung ²⁹⁾.

Die Berechnung von Strukturparametern unter Einschluß eines Terms, der (dp)- π -Bindungsbeiträge berücksichtigt, führte bisher nur zu unbefriedigenden Resultaten. Andererseits beeinflußt die zunehmende Belastung des Siliciumatoms durch Dimethylaminogruppen (vgl. die δ^{14} N-Daten für 8 und 36–39) δ^{14} N nur geringfügig.

²⁵⁾ H. Kriegsmann, Z. Anorg. Allg. Chem. 298, 223 (1959).

²⁶⁾ M. Yokoi, Bull. Chem. Soc. Japan 30, 100 (1957).

²⁷⁾ M. Yokoi und K. Yamasaki, J. Amer. Chem. Soc. 75, 4139 (1953).

²⁸⁾ G. S. Smith und E. Alexander, Acta Crystallogr. 16, 1015 (1963).

²⁹⁾ In dieser Reihe nimmt andererseits die Zahl der β-Strukturparameter zu: Dieser Parameter ist negativ und erklärt qualitativ ebenfalls den beobachteten Gang der δ¹⁴N-Daten.

Chemische Verschiebungen 814N von Silylaminoboranen

Die Borylierung eines Amins führt zu einem beträchtlichen Abschirmungsverlust des Stickstoffs¹⁴⁾. Gleiches gilt, wie die Daten der Tab. 2 zeigen, auch für die borylierten Silylamine. Zum Vergleich bieten sich die chemischen Verschiebungen der Dimethylaminoborane einerseits und der Alkylaminoborane andererseits an. Bei ersteren ist in den Silylaminoboranen eine der beiden Methylgruppen gegen die (CH₃)₃Si-Gruppe ersetzt, während die zweite bei gleichbleibenden Resten am Bor variiert wird: R₂B-N(CH₃)₂/R₂B-N(R)-Si(CH₃)₃. In der zweiten Reihe wird ein H-Atom der NH-Gruppe gegen die Trimethylsilylgruppe ausgetauscht: R₂B-NRH/R₂B-N(R)-Si(CH₃)₃.

Die Tieffeldverschiebung ist nach den vorliegenden Daten wie bei den Aminoboranen auch in der Reihe der Silylaminoborane umso größer, je weniger Stickstoffatome an das Boratom gebunden sind. Der Abschirmungsverlust des Verbindungspaares CH₃NHSi(CH₃)₃/B[N(CH₃)-Si(CH₃)₃]₃ (**58**) übertrifft mit $\Delta^{14}N = -52$ ppm den der Vergleichspaare HN(CH₃)₂/B[N(CH₃)₂]₃ ($\Delta^{14}N = -6$ ppm), H₂N-*tert*-C₄H₉/ B(NH-*tert*-C₄H₉)₃ ($\Delta^{14}N = -18$ ppm) und Pyrrolidin/Tris(pyrrolidino)boran ($\Delta^{14}N = -6$ ppm) beträchtlich. Da in den Aminoboranen sp²-hybridisierter Stickstoff vorliegt, in den Aminen und Silylaminen aber Stickstoff vom sp³-Typ, weist der große ¹⁴N-Abschirmungsverlust für **58** sowohl auf eine relativ starke Inanspruchnahme des Stickstoffs durch (dp)- π -Bindung über das Si-Atom, als auch auf eine (pp)- π -BN-Wechselwirkung hin. Mit ziemlicher Sicherheit ist **58** nicht planar, die BN- π -Bindung also nicht so stark wie in planaren Tris(amino)boranen. Dies belegt auch das für Tris(amino)borane bei tiefem Feld liegende ¹¹B-NMR-Signal von **58**.

Betrachtet man andererseits die Verbindungsreihen BX₃, CH₃BX₂, (CH₃)₂BX, so erkennt man aus Abb. 1, daß die Abschirmungsänderung für δ^{14} N bei den Methyl-

Abb. 1. Korrelation von δ^{14} N und δ^{11} B für Methylborane $R_{3-n}BX_n$ (n = 1, 2, 3) mit X = NCH₃[Si(CH₃)₃], N(CH₃)₂, N(CH₂)₄, NH - *tert*-C₄H₉ und NC₄H₄

hbare	
If vergleic	(mqq]
¹ B, bezogen aı	∆ ¹⁴ Nb) [ppm]
Δ14N und Δ1	Δ ¹¹ Ba)
HR) _n	[ppm]
sdifferenzen .	Δι4Na)
ie R _{3-n} B(NF	[ppm]
/erschiebung	811B
Aminoborar	[mgd]
anen sowie V	h1/2
NR ₂) _n bzw.	[Hz]
silylaminobor	814N
orane R _{3-n} B([ppm]
Tab. 2. Chemische Verschiebungen ⁸¹⁴ N und ⁸¹¹ B von ¹ Dimethylaminob	Verbindung

	Dimethylaminot	orane R _{3-n} B	(NR ₂) _n bzw.	. Aminobora	ne R _{3-n} B(NI	HR)n			
	Verbindung	814N [mgq]	h _{1/2} [Hz]	811B [ppm]	∆ ¹⁴ Na) [ppm]	Δ ¹¹ Ba) [ppm]	∆ ¹⁴ Nb) [ppm]	Δ11Bb) [ppm]	1
6	(CH ₃) ₂ B – NH – Si(CH ₃) ₃	<u>+</u> 282	180	-51.6	- 14	-7.0	- 13	-2.9	
41	(CH ₃) ₂ B - N(CH ₃) – Si(CH ₃)	+287	290	-51.4	6	-6.8	÷.5	-5.7	
42	$(CH_3)_2B - N(C_2H_5) - Si(CH_3)_3$	+260	160	-51.0	-36	-6.4	-23	5.4	
43	$(CH_3)_2B - N(iso-C_3H_7) - Si(CH_3)_3$	+256	198	50.8	-40	-6.2	3	-5.5	
4	$(CH_3)_2 B - N(sec - C_4H_9) - Si(CH_3)_3$	+257	151	- 51.8	39	-7.2			
45	$(CH_3)_2B - N(tert-C_4H_9) - Si(CH_3)_3$	2 57	320	-56.2	- 39	-11.8	÷13	11.1	
46	$(CH_3)_2 B - N(C_6H_5) - Si(CH_3)_3$	÷250	590	-51.7	- 46	- 7.1	5	-3.7	
47	$(CH_3)_2 B - N[Si(CH_3)_3]_2$	+281	110	- 59.5	15	- 14.9	- 14	- 10.8	
8	H_3C B-NH-Si(CH ₃)	+276	961	- 57.8					
6 4	(C ₂ H ₅) ₂ B NH Si(CH ₃) ₃	+ 288	114	-53.0	8 –	- 8.4	-7	-5.3	
5	$(C_6H_5)_2B - NH - Si(CH_3)_3$	+ 280	I	-45.8	: 23	-4.0			
51	$(C_{6}H_{5})_{2}B - N(CH_{3}) - Si(CH_{3})_{3}$	+290	750	-47.6	-+ 23	5.8			
52	$(C_{6}H_{5})_{2}B - N(CH_{3}) - Sn(CH_{3})_{3}$	+280	Ι	- 45.2	= 23	- 3.4			
53	CH ₃ B[N(CH ₃)-Si(CH ₃) ₃] ₂	+ 301	607	-41.2	36	7.7	- 50	-9.5	
	Si(CH ₃)3								
z	$H_3C - B$	305	432	- 38.2	80	-5.8			
	Si(CH ₃) ₃								

		1 41		0				
	Verbindung	814N 814N	h1/2 [H2]	811B [ppm]	Δ14N a) [ppm]	Δ11Ba) [ppm]	∆ 14N b) [ppm]	[mqq]
55	$H_{3}C-B$ $H_{3}C-B$ $H_{3}C-B$ $H_{3}C-B$ $H_{3}CH_{3}$	+.307	386	-37.1	9 -	-4.7		
36	H ₃ C – B NISi(CH ₃),1/2	+276	172	48.8	4	- 11.0		
57	CIB[N(Si(CH ₃) ₃) ₂] ₂	+322	1	-32.2	-15	+4.7		
58	B[N(CH ₃)-Si(CH ₃) ₃] ₃	+ 321	880	-33.8	- 44	-6.5	-31	-9.2
59	AI[N(Si(CH ₃) ₂] ₃	+310	1	l	I	I		

h der &-W	
)2. I. Bezüglic	
B-N(CH	
), und R ₂ (t	
(') - Si(CH	
R2B-N(R	
Verte für] Verte für R	
nenden &-V enden &-W Lit. 14).	
entsprech entsprech inen siehe	
enz∆der enz∆der minobora	
 b) Differ b) Differ von Au 	
	34*

(trimethylsilyl)aminoboranen -34 ppm und bei Pyrrolylderivaten -25 ppm beträgt, während sie für die Dimethylamino-, Pyrrolidino- und *tert*-Butylaminoborane auf beachtliche -69, -66 bzw. -67 ppm anwächst. Dieser Effekt schlägt auch auf die δ^{11} B-Werte durch, d. h. die B-Atome der Silylamino- und Pyrrolylborane sind stets wesentlich weniger gut abgeschirmt als die der Aminoborane. Eine einfache Erklärung für diesen Gang ist, daß das freie Elektronenpaar des Pyrrol- bzw. Silylamin-Stickstoffs Teil eines delokalisierten Systems ist und beim Hinzufügen eines weiteren Zentrums von einer Erweiterung der Mesomeriemöglichkeit nur mehr begrenzt Gebrauch machen kann. Diese Argumentation spricht unseres Erachtens mehr zu Gunsten von SiN-(pd)- π -Bindungen als die in der Diskussion der δ^{14} N-Werte der Aminosilane verwendeten Belege.

Unabhängig davon, ob man die δ^{11} B-Daten der Silylaminoborane denen der Dimethylaminoborane oder der Alkylaminoborane gegenübergestellt, stets haben die δ^{11} B-Werte für die Silylaminoborane negativere Werte. Jedoch resultieren beträchtliche Abweichungen für Δ^{14} N. Diese sind nur annähernd mit Substituentenparametern korrelierbar. Falls der Beitrag der Alkylgruppe als konstant angesehen wird, dann müßten die δ^{14} N-Unterschiede bei einem Vergleich von R₂B-NHR mit R₂B-N(R)-Si(CH₃)₃ auf a) unterschiedliche (dp)- π -Bindungseffekte und b) Änderungen der Geometrie zurückgeführt werden.

Die Reihe der Diphenylborane 50-52 zeigt den geringsten Abschirmungsverlust δ^{11} B, sowie nur mittelgroße Tieffeldverschiebungen der ¹⁴N-NMR-Signale. Diese Daten belegen wieder einen Ausgleichseffekt der Phenylgruppe.

Interessant ist schließlich noch ein Vergleich der offenkettigen Verbindung 53 mit den cyclischen Verbindungen 54 und 55. Für letztere darf man weitgehend ebene Ringgerüste erwarten, während Kalottenmodelle für 53 eine Verdrillung der SiCNB-Ebene gegen die CBN₂-Ebenen fordern. Folglich müßte eine BN-(pp)- π -Bindung in 54 und 55 im Vergleich zu 53 begünstigt sein. Sie wird durch die bessere Abschirmung der B-Atome in den beiden Heterocyclen bestätigt; δ^{14} N ändert sich hingegen nur sehr wenig, zumindest sind die ¹⁴N-Werte innerhalb der Fehlergrenzen gleich, zumal auch die Halbwertsbreite des ¹⁴N-Signals für 53 sehr viel größer als für 54 und 55 ist. Es kommt hinzu, daß der Ringschluß zum Fünfring üblicherweise eine Hochfeldverschiebung bedingt; diesem Effekt wirkt aber die BN- π -Bindung entgegen. Die Folge ist eine nahezu gleiche Verschiebung δ^{14} N für 53–55.

Die N-Atome der Bis(trimethylsilyl)aminoborane 47, 56 und 57 sind alle relativ gut, die B-Atome jedoch nur mäßig gut abgeschirmt. Damit belegen die δ^{14} N- und δ^{11} B-Daten Verdrillungseffekte, d. h. verminderte BN- π -Wechselwirkung.

Da B[N(Si(CH₃)₃)₂]₃ nicht dargestellt werden konnte ^{29a}), haben wir δ^{14} N für das Al-Derivat **59** gemessen. Die Gerüststruktur dieser Verbindung ist planar³⁰). Die beobachtete geringe Abschirmung des Stickstoffs ist damit erklärbar. δ^{29} Si-Daten der hier untersuchten Verbindungen könnten wesentlich zur weiteren Klärung der diskutierten Effekte beitragen.

²⁹a) P. Geymayer und E. G. Rochow, Monatsh. Chem. 97, 429 (1966).

³⁰⁾ G. M. Sheldrick und W. S. Sheldrick, J. Chem. Soc. A 1969, 2279.

Die vorliegende Arbeit wurde durch ein Stipendium der Stiftung Stipendienfonds der chemischen Industrie an B. W. entscheidend gefördert. Wir danken hierfür, ebenso wie der Badischen Anilin & Soda-Fabrik AG, Ludwigshafen, und den Farbenfabriken Bayer, Leverkusen, für zahlreiche Chemikalienspenden. Gedankt sei auch Herrn stud. rer. nat. H. Moser für geschickte Mithilfe bei den präparativen Arbeiten, desgleichen Fräulein G. Bienlein und Herrn G. Schoenauer für analytische Arbeiten.

Experimenteller Teil

Die Messungen der ¹⁴N-Kernresonanz erfolgten bei 7.226 MHz in einem statischen Magnetfeld von 23490 Gauss. Als externer Standard diente wäßrige NaNO₃-Lösung. Zur Auswertung diente die Seitenbandtechnik. Die Meßgenauigkeit betrug bei Halbhöhenbreiten bis zu 300 Hz \pm 2 ppm, bis zu 600 Hz \pm 5 ppm.

¹¹B-NMR-Messungen wurden bei 32.1 MHz durchgeführt mit BF₃·O(C₂H₅)₂ als externem Standard. Die Angaben für δ^{11} B sind auf \pm 0.3 ppm genau mit Ausnahme der Phenylderivate, die breite Signale lieferten.

Die Silylamine des Typs (CH₃)₃SiNHR (R = Alkyl, Phenyl) wurden nach Literaturvorschriften oder in leichter Abänderung davon durch Aminolyse von Trimethylchlorsilan erhalten^{31,32)}. Gleiches gilt für Silylamine des Typs (CH₃)₃SiNR₂ (R = H, Methyl, Äthyl). **4** wurde aus LiN(iso-C₃H₇)₂ und (CH₃)₃SiCl dargestellt. Die Disilazane [(CH₃)₃Si]₂NR (R = H, Methyl) wurden durch Umsetzung von NH₃ bzw. CH₃NH₂ mit (CH₃)₃SiCl gewonnen³¹⁾. Die übrigen Disilazane erhielten wir über *N*-Lithiosilylamine mit Trimethylchlorsilan³³⁾. Die Cl-haltigen Disilylamine **19–29** entstanden bei der Umsilylierung von Bis(trimethylsilyl)aminen mit den entsprechenden Chlorsilanen³⁴⁾.

	Sdp. °C/ Torr	% Ausb.	Summenformel (MolMasse)		An C	alyse H	N
SiMe ₃	_						
H ₃ C-BN	52/1	78	C9H25BN2Si (228.3)	Ber. Gef.	47.58 45.86	11.01 10.89	12.34 12.16
Si Me ₃ (CH ₃) ₂ B $-$ N(iso-C ₃ H ₇) $-$ Si(CH ₃) ₃	54 - 56/12	289	C8H22BNSi	Ber.	56.42	12.85	8.19
(CH3)2B-N(sec-C4H9)-Si(CH3)3	65/12	77	(171.2) C9H24BNSi	Gef. Ber.	56.72 58.43	12.91 12.96	7.66 7.57
$(CH_3)_2B - N(tert-C_4H_9) - Si(CH_3)_3$	60/12	71	(185.2) C ₉ H ₂₄ BNSi	Gef. Ber.	58.10 58.43	12.95 12.96	6.99 7.57
$(CH_3)_2B - N(C_6H_5) - Si(CH_3)_3$	40-42/1	82	(185.2) C11H20BNSi	Gef. Ber.	57.89 64.45	12.51 9.75	7.42 6.83
Br			(205.2)	Gef.	63.84	9.84	6.95
H ₃ C-B N[Si(CH ₃) ₃] ₂	53/1	88	C ₇ H ₂₁ BBrNSi ₂ (266.1)	Ber. Gef.	31.61 32.45	7.87 7.12	5.26 6.02

Tab. 3. Physikalische und analytische Daten von Silylaminoboranen

31) R. C. Osthoff und S. W. Kantor, Inorg. Syn. 5, 55 (1957).

33) U. Wannagat und H. Niederprüm, Chem. Ber. 94, 1540 (1961).

³²⁾ R. Fessenden und J. S. Fessenden, Chem. Rev. 61, 372 (1961).

³⁴⁾ Hierüber berichten wir an anderer Stelle (Z. Naturforsch.); vgl. auch U. Wannagat, J. Herzig, P. Schmidt und M. Schulze, Monatsh. Chem. 102, 1817 (1971).

Trimethylsilylaminoborane erhielten wir a) durch Silazanspaltung mit Borhalogeniden³⁵⁾, b) durch Reaktion von N-Lithioaminoboranen mit Chlorsilanen^{36,37)} und c) durch Umsetzung von N-Lithiosilylaminen mit Borhalogeniden.

Nach a) wurden synthetisicrt **58**, 41^{361} , 40^{361} , 50^{353} , 51^{353} , **56** und **49**. Die Methode b) machte **42**³⁷⁾ und **55**³⁶⁾ zugänglich. Alle anderen Silylaminoborane erhielten wir nach c). Nachstehend wird eine Reaktion stellvertretend beschrieben. Die physikalischen und analytischen Daten neuer Silylaminoborane finden sich in Tab. 3.

Dimethyl/N-tert-butyl-N-(trimethylsilyl)amino/boran (45): 7.33 g (CH₃)₃SiNH- tert-C₄H₉ (0.05 mol) wurden mit 32 ml C₄H₉Li in Hexan (1.57 mol) versetzt und 24 h unter Rückfluß gekocht. Zu der dann vorliegenden Suspension tropfte man langsam unter starkem Rühren bei Raumtemp. 6.06 g (CH₃)₂BBr (0.05 mol). Nach Beendigung der exothermen Reaktion wurde ohne Abfiltrieren des Unlöslichen das Hexan abdestilliert, danach durch fraktionierte Destillation 6.7 g (71%) 45 vom Sdp. 60°C/12 Torr als klare, farblose Flüssigkeit gewonnen.

37) I. Geisler und H. Nöth, Chem. Commun. 1969, 775.

[360/73]

³⁵⁾ H. Nöth und M. J. Sprague, J. Organomet. Chem. 22, 11 (1970).

³⁶⁾ I. Geisler und H. Nöth, Chem. Ber. 106, 1943 (1973).